电子器件

如何选择红外测温仪

  红外光也叫红外线,它是一位英国科学家发现的。1800年,赫胥尔在研究太阳光时,让光通过棱镜分解为彩色光带,他用温度计去测量光带中不同颜色所含的热量。试验中,他偶然发现一个奇怪的现象:放在光带红光外的一支温度计,比室内其他温度的指示数值高。经过反复试验,这个所谓热量多的高温区,总是位于光带边缘处红光的外面。于是他宣布太阳发出的辐射中除可见光线外,还有一种人眼看不见的“热线”,这种人的肉眼看不见的“热线”位于红色光外侧,叫做红外线。(不过,要说明的是,事实上太阳发出的能量以波长580nm的绿光强。)红外线是一种电磁波,具有与无线电波及可见光一样的本质。红外线的波长在0.76~100μm之间,位于无线电波与可见光之间。任何物体,只要它的温度比零下273度高,就无一例外地发射出红外线。

  可分为三个方面:

  性能指标方面,如温度范围、光斑尺寸、工作波长、测量精度、响应时间等;环境和工作条件方面,如环境温度、窗口、显示和输出、保护附件等;其他选择方面,如使用方便、维修和校准性能以及价格等,也对测温仪的选择产生一定的影响。随着技术和不断发展,红外测温仪佳设计和新进展为用户提供了各种功能和多用途的仪器,扩大了选择余地。

  1确定测温范围:

  测温范围是测温仪重要的一个性能指标。如INFR(红外时代)、Raytek(雷泰)产品覆盖范围为-50℃-+3000℃,但这不能由一种型号的红外测温仪来完成。每种型号的测温仪都有自己特定的测温范围。因此,用户的被测温度范围一定要考虑准确、周全,既不要过窄,也不要过宽。根据黑体辐射定律,在光谱的短波段由温度引起的辐射能量的变化将由发射率误差所引起的辐射能量的变化,因此,测温时应尽量选用短波较好。一般来说,测温范围越窄,监控温度的输出信号分辨率越高,精度可靠性容易解决。测温范围过宽,会降低测温精度。例如,如果被测目标温度为1000℃,首先确定在线式还是便携式,如果是便携式。满足这一温度的型号很多,如Ti315,Ti213等。

  2确定目标尺寸:

  红外测温仪根据原理可分为单色测温仪和双色测温仪(辐射比色测温仪)。对于单色测温仪,在进行测温时,被测目标面积应充满测温仪视场。建议被测目标尺寸视场大小的50%为好。如果目标尺寸小于视场,背景辐射能量就会进入测温仪的视声符支干扰测温读数,造成误差。相反,如果目标大于测温仪的视场,测温仪就不会受到测量区域外面的背景影响。

  对于双色测温仪,其温度是由两个独立的波长带内辐射能量的比值来确定的。因此当被测目标很小,没有充满现场,测量通路上存在烟雾、尘埃、阻挡对辐射能量有衰减时,都不会对测量结果产生影响。甚至在能量衰减了95%的情况下,仍能保证要求的测温精度。对于目标细小,又处于运动或振动之中的目标;有时在视场内运动,或可能部分移出视场的目标,在此条件下,使用双色测温仪是佳选择。如果测温仪和目标之间不可能直接瞄准,测量通道弯曲、狭小、受阻等情况下,双色光纤测温仪是佳选择。这是由于其直径小,有柔性,可以在弯曲、阻挡和折叠的通道上传输光辐射能量,因此可以测量难以接近、条件恶劣或靠近电磁场的目标。

  3确定光学分辨率

  光学分辨率由D与S之比确定,是测温仪到目标之间的距离D与测量光斑直径S之比。例如国产的手持式红外测温仪Ti213,距离系数为80:1,如果距目标80厘米远,那么测量范围的直径是1厘米。如果测温仪由于环境条件限制必须安装在远离目标之处,而又要测量小的目标,就应选择高光学分辨率的测温仪。光学分辨率越高,即增大D:S比值,测温仪的成本也越高。

  4确定波长范围:

  目标材料的发射率和表面特性决定测温仪的光谱响应或波长。对于高反射率合金材料,有低的或变化的发射率。在高温区,测量金属材料的佳波长是近红外,可选用0.18-1.0μm波长。其他温区可选用1.6μm、2.2μm和3.9μm波长。由于有些材料在一定波长是透明的,红外能量会穿透这些材料,对这种材料应选择特殊的波长。如测量玻璃内部温度选用10μm、2.2μm和3.9μm(被测玻璃要很厚,否则会透过)波长;测量玻璃内部温度选用5.0μm波长;测低区区选用8-14μm波长为宜;再如测量聚乙烯塑料薄膜选用3.43μm波长,聚醋类选用4.3μm或7.9μm波长。厚度0.4mm选用8-14μm波长;又如测火焰中的C02用窄带4.24-4.3μm波长,测火焰中的C0用窄带4.64μm波长,测量火焰中的N02用4.47μm波长。

  5确定响应时间:

  响应时间表示红外测温仪对被测温度变化的反应速度,定义为到达后读数的95%能量所需要时间,它与光电探测器、信号处理电路及显示系统的时间常数有关。新型红外测温仪响应时间可达1ms。这要比接触式测温方法,快得多。如果目标的运动速度很快或测量快速加热的目标时,要选用快速响应红外测温仪,否则达不到足够的信号响应,会降低测量精度。然而,并不是所有应用都要求快速响应的红外测温仪。对于静止的或目标热过程存在热惯性时,测温仪的响应时间就可以放宽要求了。因此,红外测温仪响应时间的选择要和被测目标的情况相适应。

  6信号处理功能:

  鉴于离散过程(如零件生产)和连续过程不同,所以要求红外测温仪具有多信号处理功能(如峰值保持、谷值保持、平均值)可供选用,如测温传送带上的瓶子时,就要用峰值保持,其温度的输出信号传送至控制器内。否则测温仪读出瓶子之间的较低的温度值。若用峰值保持,设置测温仪响应时间稍长于瓶子之间的时间间隔,这样至少有一个瓶子总是处于测量之中。

  7环境条件考虑:

  温仪所处的环境条件对测量结果有很大影响,应予考虑并适当解决,否则会影响测温精度甚至引起损坏。当环境温度高,存在灰尘、烟雾和蒸汽的条件下,可选用厂商提供的保护套、水冷却、空气冷却系统、空气吹扫器等附件。

  这些附件可有效地解决环境影响并保护测温仪,实现准确测温。在确定附件时,应尽可能要求标准化服务,以降低安装成本。当在噪声、电磁场、震动或难以接近环境条件下,或其他恶劣条件下,烟雾、灰尘或其他颗粒降低测量能量信信号时,光纤双色测温仪是佳选择。在噪声、电磁场、震动和难以接近的环境条件下,或其他恶劣条件时,宜选择光纤比色测温仪。

  在密封的或危险的材料应用中(如容器或真空箱),测温仪通过窗口进行观测。材料必须有足够的强度并能通过所用测温仪的工作波长范围。还要确定操作工是否也需要通过窗口进行观察,因此要选择合适的安装位置和窗口材料,避免相互影响。在低温测量应用中,通常用Ge或Si材料作为窗口,不透可见光,人眼不能通过窗口观察目标。如操作员需要通过窗口目标,应采用既透红外辐射又透过可见光的光学材料,如应采用既透红外辐射又透过可见光的光学材料,如ZnSe或BaF2等作为窗口材料。

  当测温仪工作环境中存在易燃气体时,可选用本征安全型红外测温仪,从而在一定浓度的易燃气体环境中进行安全测量和监视。

  在环境条件恶劣复杂的情况下,可以选择测温头和显示器分开的系统,以便于安装和配置。可选择与现行控制设备相匹配的信号输出形式。