电子器件

逻辑函数的化简方法

  一、公式法化简:是利用逻辑代数的基本公式,对函数进行消项、消因子。常用方法有:

  ①并项法利用公式AB+AB’=A将两个与项合并为一个,消去其中的一个变量。

  ②吸收法利用公式A+AB=A吸收多余的与项。

  ③消因子法利用公式A+A’B=A+B消去与项多余的因子

  ④消项法利用公式AB+A’C=AB+A’C+BC进行配项,以消去更多的与项。

  ⑤配项法利用公式A+A=A,A+A’=1配项,简化表达式。

  二、卡诺图化简法

  逻辑函数的卡诺图表示法

  将n变量的全部最小项各用一个小方块表示,并使具有逻辑相邻性的最小项在几何位置上相邻排列,得到的图形叫做n变量最小项的卡诺图。

  逻辑相邻项:仅有一个变量不同其余变量均相同的两个最小项,称为逻辑相邻项。

  1、表示最小项的卡诺图

  将逻辑变量分成两组,分别在两个方向用循环码形式排列出各组变量的所有取值组合,构成一个有2n个方格的图形,每一个方格对应变量的一个取值组合。具有逻辑相邻性的最小项在位置上也相邻地排列。

  用卡诺图表示逻辑函数:

  方法一:1、把已知逻辑函数式化为最小项之和形式。

  2、将函数式中包含的最小项在卡诺图对应的方格中填1,其余方格中填0。

  方法二:根据函数式直接填卡诺图。

  用卡诺图化简逻辑函数:

  化简依据:逻辑相邻性的最小项可以合并,并消去因子。

  化简规则:能够合并在一起的最小项是2n个。

  如何最简:圈数越少越简;圈内的最小项越多越简。

  注意:卡诺图中所有的1都必须圈到,不能合并的1单独画圈。

  说明,一逻辑函数的化简结果可能不唯一。

  合并最小项的原则:

  1)任何两个相邻最小项,可以合并为一项,并消去一个变量。

  2)任何4个相邻的最小项,可以合并为一项,并消去2个变量。

  3)任何8个相邻最小项,可以合并为一项,并消去3个变量。

  卡诺图化简法的步骤:

  画出函数的卡诺图;

  画圈(先圈孤立1格;再圈只有一个方向的最小项(1格)组合);

  画圈的原则:合并个数为2n;圈尽可能大(乘积项中含因子数最少);圈尽可能少(乘积项个数最少);每个圈中至少有一个最小项仅被圈过一次,以免出现多余项。

  写出最简与或表达式。